T-SOL
Fundamentals

Fourth Edition

Itzik Ben-Gan

o Microsoft

T-SQL Fundamentals

Itzik Ben-Gan

T-SQL Fundamentals
Published with the authorization of Microsoft Corporation by:

Pearson Education, Inc.

Copyright © 2023 by Itzik Ben-Gan.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-810210-4

ISBN-10: 0-13-810210-4

Library of Congress Control Number: 2023930537
ScoutAutomatedPrintCode

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief
Brett Bartow
Executive Editor
Loretta Yates
Associate Editor
Charvi Arora
Development Editor
Songlin Qiu
Managing Editor
Sandra Schroeder
Senior Project Editor
Tracey Croom
Copy Editor

Scout Festa
Indexer

Erika Milllen
Proofreader

Jen Hinchliffe
Technical Editor
Lilach Ben-Gan
Editorial Assistant
Cindy Teeters
Cover Designer

Twist Creative, Seattle

Compositor

codeMantra

http://www.pearson.com/permissions
http://www.microsoft.comon
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
mailto:corpsales@pearsoned.com

Pearson’s Commitment to Diversity,
Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.
Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to
create content for every product and service, we acknowledge our responsibility to dem-
onstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their
potential through learning. As the world's leading learning company, we have a duty to help
drive change and live up to our purpose to help more people create a better life for themselves
and to create a better world.

Our ambition is to purposefully contribute to a world where:

m Everyone has an equitable and lifelong opportunity to succeed through learning.

m Our educational products and services are inclusive and represent the rich diversity of
learners.

m Our educational content accurately reflects the histories and experiences of the learners
we serve.

m Our educational content prompts deeper discussions with learners and motivates them
to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

m Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

To Dato,
To live in hearts we leave behind,
Is not to die.

—THomAs CAMPBELL

Contents at a Glance

CHAPTER1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12

Acknowledgments
About the Author
Introduction

Background to T-SQL querying and programming
Single-table queries

Joins

Subqueries

Table expressions

Set operators

T-SQL for data analysis

Data modification

Temporal tables

Transactions and concurrency
SQL Graph

Programmable objects

Appendix: Getting started

Index

XXI
XXiii

XXV

27
17
149
177
21
231
293
343
367
409
491

527

547

Contents

Chapter 1

Chapter 2

Acknowledgments XXi
Aboutthe AULNOr XXIil
INtroduction XXV
Background to T-SQL querying and programming 1
Theoretical background 1
Y 2
Settheory. ..o 3
Predicate logiccoei 4
Therelationalmodel............. . i 5
Types of database workloads. ... M
SQL Serverarchitecture. ... 13
On-premises and cloud RDBMS flavors 13
SQL Serverinstances.oouii i 15
Databases.ot 16
Schemasandobjects ... 19
Creating tables and defining dataintegrity 20
Creatingtables 21
Defining dataintegrity....... ..o 22
CONCIUSION . e 26
Single-table queries 27
Elements of the SELECT statement..............coooiiiiiiiiiin.. 27
The FROM Clauseo 29
The WHERE ClauSeo 31
The GROUP BY Clause.on e 32
The HAVING Clauseoi e 36
The SELECT Clause . ..o 37
The ORDERBY Clauseoiii e 42
The TOP and OFFSET-FETCHfiltersooviiiiiiiiiiin.. 44
A quick look at window functions.o oL 49

X

Contents

Predicates and operatorso.iuiii i 50

CASE @XPIESSIONS. . ettt ettt e e e e e 53
INULLS. . .o 56
The GREATEST and LEAST functionscooiiiiiii i 62
All-at-0nce Operations.t e 63
Working with characterdata ... 64
Data tyPes .ot 64
Collation . .. e 66
Operatorsand functions ... 68
The LIKE predicate.ot 81
Working with date and timedata............... o il 83
Date and timedatatypescoiiiiiiiiii 84
Literals. ... 84
Working with date and time separately 88
Filtering dateranges.ouiiiii 90
Date and time functions ... 90
Queryingmetadata.t 103
Catalog VIEWS 104
Information schemaviews ...t 105
System stored procedures and functions. 105
CONCIUSION . .ot 106
EXEICISES ot 107
EXErCiSe T 107
EXErCiSE 2 .o 107
EXErCise 3 o 108
EXErCiSE 4 . 108
EXErCise 5 . 109
EXErCiSE 6 .o 109
EXEICISE 7 109
EXErCise 8 . 10
EXErCiSE O 10
EXercise 10 ... m

SOlUTIONS. .o m

EXErCiSE 1. m
EXEICISE 2 ot e 12
EXErCiSe 3 12
EXErCISE 4 . e 12
EXercise 5 . 13
EXEICISE 6 .ttt e 14
EXErCISE 7 15
EXErCiSe 8 . 15
EXErCiSE O . 16
EXercise 10 ..o e 16
Chapter 3 Joins 117
CrOSS JOINS .ttt ettt et e 17
SQL-92 SYNtaX « vttt 18
SQL-89 SYNTAX . .o ettt et e 18
Self Cross JOINS. . ..ot 19
Producing tables of numbers.............. 120
INNEI JOINS. o 121
SQL-92 SYNtaX « vttt 121
SQL-89 SYNTAX . .o ettt 122
Innerjoinsafety 123
MoOre jOiN eXamMpPIes.ot 124
CoOMPOSItE JOINS ..ottt 124
NON-EQUI JOINS . . et 125
MUlti-joiN QUENIES ... 127
OULET JOINS .« . ottt 128
Outer joins, described ... 128
Including missing values ... 130
Filtering attributes from the nonpreserved side
of an OUter jOIN. ...t 132
Using outer joins in a multi-joinquery 133
Using the COUNT aggregate with outerjoins 136
CONCIUSION . e 137

Contents xi

EXEICISES .« . 137

EXercise 1-T. . o 137
Exercise 1-2. 138
EXErCiSE 2 .o 139
EXercise 3 140
EXErCiSe 4 . o 140
EXercise 5 ... 141
EXErCiSE 6 .\ttt 141
EXErcise 7 ..o 141
EXercise 8 .. . 142
EXErcise O ... o 142
SOIULIONS. . .o 143
EXercise 1-T. . o 143
Exercise 1-2. 143
EXErCiSE 2 . 144
EXercise 3 ... 144
EXErCiSe 4 . 145
EXercise 5 145
EXErCISE 6 .\t e 145
EXErCiSe 7 . 146
EXercise 8 .. 146
EXercise O ... 147
Chapter 4 Subqueries 149
Self-contained subqueries i 149
Self-contained scalar subquery examples 149
Self-contained multivalued subquery examples 151
Correlated subqueries 155
The EXISTS predicate ..ot 158
Returning previousornextvalues............ ..., 159
Using running aggregateso.vuiniiii i 160
Dealing with misbehaving subqueries ... 161
NULLtrouble.o 161
Substitution errors in subquery columnnames.................. 163
CONCIUSION . .ot 166

xii Contents

EXEICISES . .o 166

EXErCiSE 1. 166
EXEICISE 2 .t 166
EXErCise 3 . 167
EXErCiSE 4 . 167
EXErcise 5 . 168
EXEICISE 6 . vttt 168
EXErCISE 7 169
EXErCise 8 . 169
EXErCise O . 170
EXercise 10 ..o 170
SOIULIONS. . 170
EXErCiSe T 170
EXEICISE 2 .ttt 170
EXErCise 3 o 17
EXErCiSE 4 . 17
EXErcise 5 . 172
EXErCiSE 6 .o 172
EXEICISE 7 172
EXercise 8 .. 173
EXErCiSe O . 173
EXercise 10 ... oo 174
Chapter 5 Table expressions 177
Derived tables. 177
Assigning columnaaliases. ... 179
USINg argumentsttt 181
NESHtING « e 181
Multiple references. i 182
Common table expressionsouii i 183
Assigning column aliases inCTESooiiiiiiiiiininan... 184
Using arguments in CTES., 185
Defining multiple CTES. ..ottt 185
Multiple references in CTES., 186
Recursive CTES ..ot e 186

Contents xiii

Views and the ORDERBY clausecccoviiiiiiiiiinnn.. 190

VIeW OPtioNS . ..ot 192

Inline table-valued functions......... i 196
The APPLY OPerator ...ttt et 197
CONCIUSION . .o 200
EXEICISES . .ot 201
EXErCiSE T 201
EXErCise 2-T. .o 201
EXErCiSe 2-2 o 202
EXercise 3-1. o 202
EXErCise 3-2 .o 203
EXErCiSE 4 . 203
EXercise 5-1. .o 203
EXErCiSe 52 .t 204
EXErcise 6-T1. . o 205
EXErCise 6-2 . . o 205
SOIULIONS. . 206
EXErCiSE 1. 206
EXErCise 2-1. o o 206
EXErCISE 2-2 206
EXercise 3-1. . 207
EXErCise 3-2 . 207
EXErCiSE 4 . 207
EXercise 5-1. . o 208
EXercise 5-2 .. . 208
EXErCise B-T1. . o 209
EXErCise 6-2 .. o 209
Chapter 6 Set operators 211
The UNION OpPeratoru ettt 212
The UNION ALL OPeratorovuu e 213

The UNION (DISTINCT) Operator.oouueininianenan. 213

xiv Contents

The INTERSECT OPerator.t 214

The INTERSECT (DISTINCT) operatoroovvuinineninnnnn... 215

The INTERSECT ALL operator.oouvi i, 215

The EXCEPT OPeratorttt e e 217
The EXCEPT (DISTINCT) operator.vvui i 218

The EXCEPT ALL Operator ..ot 219
Precedence 220
Circumventing unsupported logical phases 221
CONCIUSION . .o 223
EXEICISES . .ttt 223
EXErCiSe T 223
EXEICISE 2 .t 223
EXErCise 3 o 224
EXErCiSe 4 . 225
EXErCise 5 . 225
EXEICISE 6 .ttt 226
SOIULIONS. . 227
EXErCiSe . 227
EXEICISE 2 .t 227
EXErCiSe 3 o 228
EXErCISE 4 .o 228
EXErCise 5 . 229
EXEICISE 6 .o 230
Chapter 7 T-SQL for data analysis 231
Window fuNCtioNso i 231
Ranking window functions.............. i 234
Offset window functions..................coiiiiiiiiin... 237
Aggregate window functions. 242

The WINDOW ClaUSeo 244
Pivoting data. ... 246
Pivoting withagrouped query ... 248
Pivoting with the PIVOT operator. ...t 249

Contents xv

xvi

Contents

Unpivotingdata. 251

Unpivoting with the APPLY operator.................ooooviu.a.. 253
Unpivoting with the UNPIVOT operator.ooovuinn.. 255
GrOUPING SEES . o ettt 256
The GROUPING SETS subclauseooviiiiiiiiininnn... 258
The CUBEsubclause ... 258
The ROLLUP subclause.o 258
The GROUPING and GROUPING_ID functions 260
T 0 == T3 262
Sampledata. 263
The DATE_BUCKET function. ... 266
Custom computation of start of containing bucket 268
Applying bucket logicto sampledata........................... 270
Gapfilling. ..o 275
CONCIUSION . e 280
EXEICISES o et 280
EXErCise . . 280
EXErCiSE 2 281
EXErCise 3 . 282
EXErCiSE 4 . 282
EXErCise 5 . 282
EXEICISE 6 .o 283
EXEICISE 7 284
EXErCiSe 8 . 285
SOIULIONS. . 285
EXErCiSe T 285
EXEICISE 2 .o 286
EXErCiSe 3 . 286
EXErCISE 4 .o 286
EXErCise 5 . 287
EXEICISE 6 .o 288
EXEICISE 7 289
EXErCiSe 8 . 290

Chapter 8 Data modification 293

Inserting datat 293
The INSERT VALUES statement ..., 293
The INSERT SELECT statement.ooviiiiiiiiiiian... 295
The INSERT EXEC statement.t 296
The SELECTINTO statement.ooviin e 297
The BULK INSERT statement.ooiiiiiii e 298
The identity property and the sequence object.................. 298
Deleting dataot 307
The DELETE statementouinii e 308
The TRUNCATE statement ...t 309
DELETEbased 0N ajoinuuueei e 310
Updating data. ... 3N
The UPDATE statementt 313
UPDATE based 0N ajoin.o.uuiuiiii e 314
Assignment UPDATEo e 316
Merging data ..o 317
Modifying data through table expressions............................ 321
Modifications with TOP and OFFSET-FETCH.............c.cooviuin.. 324
The OUTPUT Clause.o e 326
INSERT with OUTPUT i 326
DELETEWith OUTPUT . ..o 328
UPDATE With OUTPUT i 329
MERGE With OUTPUT . ..o 330
Nested DML, 331
CONCIUSION . o 333
EXEICISES « ot 333
EXErCiSE 1. 333
EXErCISE 2 .o 334
EXErCiSE 3 . 334
EXEICISE 4 . 334
EXercise 5 . 336
EXErCISE 6 .o 336

Contents xvii

SOlUtIONS. . 337

EXEICISE T 337
EXEICISE 2 . 338
EXEICISE 3 o 339
EXErCise 4 .. o 340
EXEICISE D 340
EXEICISE 6 .. o 341
Chapter 9 Temporal tables 343
Creatingtables. 344
Modifyingdata. ... 348
Querying data.o.oui e 353
CONCIUSION . . 360
EXOICISES .ttt 360
EXEICISE T 360
EXOICISE 2 o 360
EXEICISE 3 o 361
EXOICISE 4 . 362
SOIULIONS. 362
EXEICISE T e 362
EXOICISE 2 o 364
EXEICISE 3 o 365
EXOICiSE 4 . 366
Chapter 10 Transactions and concurrency 367
TraNSACtIONS. . ..ot 367
Locksand blockingo 370
LOCKS .o 371
Troubleshooting blocking. ... 373
[solation levels 380
The READ UNCOMMITTED isolationlevel....................... 381

The READ COMMITTED isolationlevel.......................... 382

The REPEATABLE READ isolationlevel........................... 384

The SERIALIZABLE isolationlevel 386

xviii Contents

Isolation levels based on row versioning 387

Summary of isolationlevels ol 394
Deadlocks. 394
CONCIUSION . .o 397
EXOICISES vttt 397

EXErCiSe 1. 397

EXOICISE 2 o 400

EXEICISE 3 407

Chapter 11 SQL Graph 409
Creatingtables. 410

Traditional modeling oo 41

Graphmodeling.o 417
Querying data.o.oni 438

Usingthe MATCH Clauseoviei e 438

RECUISIVE QUEIIES . . .ottt 450

Using the SHORTEST_PATH option.............coiiiiinan.. 454

SQL Graph querying features that are still missing............... 471
Data modification considerations 474

Deleting and updatingdata................coiiiiii 474

Merging data.ouinii e 477
CONCIUSION . .. 480
EXOICISES . vttt 481

EXEICISE T 481

EXEICISE 2 . 482

EXEICISE 3 o 483

EXErCiSE 4 .. oo 483
SOIUtIONS. .. 484

EXEICISE T o 484

EXEICISE 2 . 485

EXEICISE 3 o 487

EXEICISE 4 .. 488
CleanuUp .o 490

Contents Xix

Chapter 12 Programmable objects 491

Variables. ... 491
BatChes ... 494
Abatchasaunitofparsing..................... L 494
Batchesandvariables........... 495
Statements that cannot be combined in the same batch 495
Abatchasaunitofresolution.................................. 496
The GO NOPLION. ...t 496
Flow elements. 497
The IF.. ELSEflowelement.......... 497
The WHILEflowelement......... ..o 498
CUISOS ottt e e e 500
Temporary tables. ... 505
Local temporarytableso i 505
Global temporary tables........... ... o i 507
Tablevariables 508
Table types. ..o 509
Dynamic SQL. . ..o 510
The EXECcommandt 511
The sp_executesql stored procedure 51
Using PIVOT with DynamicSQLcoiiiiiii et 512
ROULINES ..o 513
User-defined functions i 514
Stored ProCedures. . ..o 515
TrggerS . e 517
Errorhandling. ... 521
CoNCIUSION . .o 525
Appendix: Getting started 527
Index 547

XX Contents

Acknowledgments

A number of people contributed to making this book a reality, either directly or indi-
rectly, and deserve thanks and recognition. It's certainly possible | omitted some names
unintentionally, and | apologize for this ahead of time.

To Lilach: You're the one who makes me want to be good at what | do. Besides being
my inspiration in life, you always take an active role in my books, helping to review the
text for the first time. In this book, you took a more official technical editing role, and |
can't appreciate enough the errors you spotted, and the many ideas and suggestions for
improvements.

To my siblings, Mickey and Ina: Thank you for the constant support and for accepting
the fact that I'm away.

To Davide Mauri, Herbert Albert, Gianluca Hotz, and Dejan Sarka: Thanks for your
valuable advice when | reached out asking for it.

To the editorial team at Pearson and related vendors. Loretta Yates, many thanks for
being so good at what you do and for your positive attitude! Thanks to Charvi Arora for all
your hard work and effort. Also, thanks to Songlin Qiu, Scout Festa, Karthik Orukaimani,
and Tracey Croom for sifting through all the text and making sure it’s polished.

To my friends from Lucient, Fernando G. Guerrero, Herbert Albert, Fritz Lechnitz, and
many others. We've been working together for over two decades, and it's been quite a
ride!

To members of the Microsoft SQL Server development team, Umachandar Jayachan-
dran (UC), Conor Cunningham, Kevin Farlee, Craig Freedman, Kendal Van Dyke, Derek
Wilson, Davide Mauri, Bob Ward, Buck Woody, and I'm sure many others. Thanks for
creating such a great product, and thanks for all the time you spent meeting with me
and responding to my emails, addressing my questions, and answering my requests for
clarification.

To Aaron Bertrand, who besides being one of the most active and prolific SQL Server
pros | know, does an amazing job editing the sglperformance.com content, including my
articles.

To Data Platform MVPs, past and present: Erland Sommarskog, Aaron Bertrand, Hugo
Kornelis, Paul White, Alejandro Mesa, Tibor Karaszi, Simon Sabin, Denis Reznik, Tony
Rogerson, and many others—and to the Data Platform MVP lead, Rie Merritt. This is a
great program that I'm grateful for and proud to be part of. The level of expertise of this

xXi

http://sqlperformance.com

group is amazing, and I'm always excited when we all get to meet, both to share ideas
and just to catch up at a personal level.

Finally, to my students: Teaching about T-SQL is what drives me. It's my passion.
Thanks for allowing me to fulfill my calling and for all the great questions that make me
seek more knowledge.

xxii Acknowledgments

About the Author

ITZIK BEN-GAN is a leading authority on T-SQL, regularly teaching, lecturing, and writing
on the subject. He has delivered numerous training events around the world focused
on T-SQL Querying, Query Tuning, and Programming. He is the author of several books
including T-SQL Fundamentals, T-SQL Querying, and T-SQL Window Functions. Itzik has
been a Microsoft Data Platform MVP (Most Valuable Professional) since 1999.

xxiii

xxiv

Introduction

his book walks you through your first steps in T-SQL (also known as Transact-SQL),

which is the Microsoft SQL Server dialect of the ISO/IEC and ANSI standards for SQL.
You'll learn the theory behind T-SQL querying and programming and how to develop
T-SQL code to query and modify data, and you'll get a brief overview of programmable
objects.

Although this book is intended for beginners, it's not merely a set of procedures for
readers to follow. It goes beyond the syntactical elements of T-SQL and explains the logic
behind the language and its elements.

Occasionally, the book covers subjects that might be considered advanced for read-
ers who are new to T-SQL; therefore, you should consider those sections to be optional
reading. If you feel comfortable with the material discussed in the book up to that point,
you might want to tackle these more advanced subjects; otherwise, feel free to skip
those sections and return to them after you gain more experience.

Many aspects of SQL are unique to the language and very different from other pro-
gramming languages. This book helps you adopt the right state of mind and gain a true
understanding of the language elements. You learn how to think in relational terms and
follow good SQL programming practices.

The book is not version specific; it does, however, cover language elements that were
introduced in recent versions of SQL Server, including SQL Server 2022. When | discuss
language elements that were introduced recently, | specify the version in which they
were added.

Besides being available as an on-premises, or box, flavor, SQL Server is also available
as cloud-based flavors called Azure SQL Database and Azure SQL Managed Instance. The
code samples in this book are applicable to both the box and cloud flavors of SQL Server.

To complement the learning experience, the book provides exercises you can use to
practice what you learn. | cannot emphasize enough the importance of working on those
exercises, so make sure not to skip them!

Who Should Read This Book

This book is intended for T-SQL developers, database administrators (DBAs), business
intelligence (BI) practitioners, data scientists, report writers, analysts, architects, and SQL
Server power users who just started working with SQL Server and who need to write
queries and develop code using T-SQL.

This book covers fundamentals. It's mainly aimed at T-SQL practitioners with little or
no experience. With that said, several readers of the previous editions of this book have
mentioned that—even though they already had years of experience—they still found
the book useful for filling in gaps in their knowledge.

This book assumes that you are familiar with basic concepts of relational database
management systems.

Organization of This Book

This book starts with a theoretical background to T-SQL querying and programming in
Chapter 1, laying the foundation for the rest of the book, and provides basic coverage of
creating tables and defining data integrity. The book covers various aspects of querying
and modifying data in Chapters 2 through 8, and holds a discussion of transactions and
concurrency in Chapter 10. In Chapter 9 and Chapter 11 the book covers specialized top-
ics including temporal tables and SQL Graph. Finally, the book provides a brief overview
of programmable objects in Chapter 12.

Here's a list of the chapters along with a short description of the content in each chapter:

m Chapter1, "Background to T-SQL querying and programming,” provides the
theoretical background for SQL, set theory, and predicate logic. It examines
relational theory, describes SQL Server's architecture, and explains how to create
tables and define data integrity.

m Chapter 2, "Single-table queries,” covers various aspects of querying a single
table by using the SELECT statement.

m Chapter 3, "Joins,” covers querying multiple tables by using joins, including cross
joins, inner joins, and outer joins.

m Chapter 4, "Subqueries,” covers queries within queries, otherwise known as
subqueries.

m Chapter 5, "Table expressions,” covers derived tables, Common Table Expressions
(CTEs), views, inline table-valued functions (iTVFs), and the APPLY operator.

Introduction XXV

m Chapter 6, “Set operators,” covers the set operators UNION, INTERSECT, and EXCEPT.

m Chapter7 “T-SQL for data analysis,” covers window functions, pivoting, unpivoting,
working with grouping sets, and handling time-series data.

m Chapter 8, "Data modification,” covers inserting, updating, deleting, and merging
data.

m Chapter9, "Temporal tables,” covers system-versioned temporal tables.

m Chapter 10, "Transactions and concurrency,” covers concurrency of user connec-
tions that work with the same data simultaneously; it covers transactions, locks,
blocking, isolation levels, and deadlocks.

m Chapter 11, "SQL Graph,” covers modeling data using graph-based concepts such as
nodes and edges. It includes creating, modifying, and querying graph-based data.

m Chapter 12, "Programmable objects,” provides a brief overview of the T-SQL
programming capabilities in SQL Server.

m The book also provides an appendix, “Getting started,” to help you set up your
environment, download the book’s source code, install the TSQLV6 sample data-
base, start writing code against SQL Server, and learn how to get help by working
with the product documentation.

System Requirements

The appendix, “Getting started,” explains which editions of SQL Server 2022 you can use to
work with the code samples included with this book. Each edition of SQL Server might have
different hardware and software requirements, and those requirements are described in the
product documentation, under “"Hardware and Software Requirements for Installing SQL
Server 2022," at the following URL: https.//learn.microsoft.com/en-us/sql/sql-server/install/
hardware-and-software-requirements-for-installing-sql-server-2022. The appendix also
explains how to work with the product documentation.

If you're connecting to Azure SQL Database or Azure SQL Managed Instance, hard-
ware and server software are handled by Microsoft, so those requirements are irrelevant
in this case.

For the client tool to run the code samples against SQL Server, Azure SQL Database,
and Azure SQL Managed Instance, you can use either SQL Server Management Studio
(SSMS) or Azure Data Studio (ADS). You can download SSMS at https://learn.microsoft.
com/en-us/sql/ssms. You can download Azure Data Studio at https.//learn.microsoft.com/
en-us/sql/azure-data-studio.

xxvi Introduction

https://learn.microsoft.com/en-us/sql/sql-server/install/hardware-and-software-requirements-for-installing-sql-server-2022
https://learn.microsoft.com/en-us/sql/sql-server/install/hardware-and-software-requirements-for-installing-sql-server-2022
https://learn.microsoft.com/en-us/sql/ssms
https://learn.microsoft.com/en-us/sql/ssms
https://learn.microsoft.com/en-us/sql/azure-data-studio
https://learn.microsoft.com/en-us/sql/azure-data-studio

Code Samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All source code, including exercises and solutions, can
be downloaded from the following webpage:

MicrosoftPressStore.com/TSQLFund4e/downloads

Follow the instructions to download the TSQLFundamentalsYYYYMMDD.zip file,
where YYYYMMDD reflects the last update date of the source code.

Refer to the appendix, “Getting started,” for details about the source code.

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

MicrosoftPressStore.com/TSQLFund4e/errata

If you discover an error that is not already listed, please submit it to us at the
same page.

For additional book support and information, please visit
MicrosoftPressStore.com/Support

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

Introduction xXxvii

http://MicrosoftPressStore.com/TSQLFund4e/downloads
http://MicrosoftPressStore.com/TSQLFund4e/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

Background to T-SQL querying
and programming

ou're about to embark on a journey to a land that is like no other—a land that has its own set of

laws. If reading this book is your first step in learning Transact-SQL (T-SQL), you should feel like
Alice—just before she started her adventures in Wonderland. For me, the journey has not ended;
instead, it's an ongoing path filled with new discoveries. | envy you; some of the most exciting
discoveries are still ahead of you!

I've been involved with T-SQL for many years: teaching, speaking, writing, and consulting about it.
T-SQL is more than just a language—it's a way of thinking. In my first few books about T-SQL, I've
written extensively on advanced topics, and for years | have postponed writing about fundamentals.
This is not because T-SQL fundamentals are simple or easy—in fact, it's just the opposite. The apparent
simplicity of the language is misleading. | could explain the language syntax elements in a superficial
manner and have you writing queries within minutes. But that approach would only hold you back in
the long run and make it harder for you to understand the essence of the language.

Acting as your guide while you take your first steps in this realm is a big responsibility. | wanted
to make sure that | spent enough time and effort exploring and understanding the language before
writing about its fundamentals. T-SQL is deep; learning the fundamentals the right way involves much
more than just understanding the syntax elements and coding a query that returns the right output.
You need to forget what you know about other programming languages and start thinking in terms
of T-SQL.

Theoretical background

SQL stands for Structured Query Language. SQL is a standard language that was designed to query

and manage data in relational database management systems (RDBMSs). An RDBMS is a database
management system based on the relational model (a semantic model for representing data), which in
turn is based on two mathematical branches: set theory and predicate logic. Many other programming
languages and various aspects of computing evolved pretty much as a result of intuition. In contrast, to
the degree that SQL is based on the relational model, it is based on a firm foundation—applied math-
ematics. T-SQL thus sits on wide and solid shoulders. Microsoft provides T-SQL as a dialect of, or an
extension to, SQL in SQL Server—its on-premises RDBMS flavor, and in Azure SQL and Azure Synapse
Analytics—its cloud-based RDBMS flavors.

Note The term Azure SQL collectively refers to three different cloud offerings: Azure SQL
Database, Azure SQL Managed Instance, and SQL Server on Azure VM. | describe the differ-
ences between these offerings later in the chapter.

This section provides a brief theoretical background about SQL, set theory and predicate logic, the
relational model, and types of database systems. Because this book is neither a mathematics book nor
a design/data-modeling book, the theoretical information provided here is informal and by no means
complete. The goals are to give you a context for the T-SQL language and to deliver the key points that
are integral to correctly understanding T-SQL later in the book.

Language independence

The relational model is language independent. That is, you can apply data management and
manipulation following the relational model’s principles with languages other than SQL—for
example, with C# in an object model. Today it is common to see RDBMSs that support lan-
guages other than just a dialect of SQL—for example, the integration of the CLR, Java, Python,
and R in SQL Server, with which you can handle tasks that historically you handled mainly with
SQL, such as data manipulation.

Also, you should realize from the start that SQL deviates from the relational model in sev-
eral ways. Some even say that a new language—one that more closely follows the relational
model—should replace SQL. But to date, SQL is the de facto language used by virtually all
leading RDBMSs.

See Also For details about the deviations of SQL from the relational model, as well as how
to use SQL in a relational way, see this book on the topic: SQL and Relational Theory: How to
Write Accurate SQL Code, 3rd Edition, by C. J. Date (O'Reilly Media, 2015).

SQL
SQL is both an ANSI and ISO standard language based on the relational model, designed for querying
and managing data in an RDBMS.

In the early 1970s, IBM developed a language called SEQUEL (short for Structured English QUEry
Language) for its RDBMS product called System R. The name of the language was later changed from
SEQUEL to SQL because of a trademark dispute. SQL first became an ANSI standard in 1986, and then
an ISO standard in 1987. Since 1986, the American National Standards Institute (ANSI) and the Interna-
tional Organization for Standardization (ISO) have been releasing revisions for the SQL standard every
few years. So far, the following standards have been released: SQL-86 (1986), SQL-89 (1989), SQL-92

Background to T-SQL querying and programming

(1992), SQL:1999 (1999), SQL:2003 (2003), SQL:2006 (2006), SQL:2008 (2008), SQL:2011 (2011), and
SQL:2016 (2016). The SQL standard is made of multiple parts. Part 1 provides the framework and Part 2
defines the foundation with the core SQL elements. The other parts define standard extensions, such as
SQL for XML, SQL-Java integration, and others.

Interestingly, SQL resembles English and is also very logical. Unlike many programming languages,
which use an imperative programming paradigm, SQL uses a declarative one. That is, SQL requires
you to specify what you want to get and not how to get it, letting the RDBMS figure out the physical
mechanics required to process your request.

SQL has several categories of statements, including data definition language (DDL), data manipula-
tion language (DML), and data control language (DCL). DDL deals with object definitions and includes
statements such as CREATE, ALTER, and DROP. DML allows you to query and modify data and includes
statements such as SELECT, INSERT, UPDATE, DELETE, TRUNCATE, and MERGE. It's a common misun-
derstanding that DML includes only data-modification statements, but as | mentioned, it also includes
SELECT. Another common misunderstanding is that TRUNCATE is a DDL statement, but in factitis a
DML statement. DCL deals with permissions and includes statements such as GRANT and REVOKE. This
book focuses on DML.

T-SQL is based on standard SQL, but it also provides some nonstandard/proprietary extensions.
Moreover, T-SQL does not implement all of standard SQL. When describing a language element for the
first time, I'll typically mention if it's nonstandard.

Set theory

Set theory, which originated with the mathematician Georg Cantor, is one of the mathematical
branches on which the relational model is based. Cantor’s definition of a set follows:

By a “set” we mean any collection M into a whole of definite, distinct objects m
(which are called the “elements” of M) of our perception or of our thought.

—GEeorG CANTOR: His
MATHEMATICS AND
PHILOSOPHY OF THE INFINITE,
By JoserH W. DAUBEN
(PrinceToN UNIVERSITY
Press, 2020)

Every word in the definition has a deep and crucial meaning. The definitions of a set and set mem-
bership are axioms that are not supported by proofs. Each element belongs to a universe, and either is
or is not a member of the set.

Let's start with the word whole in Cantor’s definition. A set should be considered a single entity.
Your focus should be on the collection of objects as opposed to the individual objects that make up
the collection. Later on, when you write T-SQL queries against tables in a database (such as a table of
employees), you should think of the set of employees as a whole rather than the individual employees.

Background to T-SQL querying and programming 3

This might sound trivial and simple enough, but apparently many programmers have difficulty
adopting this way of thinking.

The word distinct means that every element of a set must be unique. Jumping ahead to tablesin a
database, you can enforce the uniqueness of rows in a table by defining key constraints. Without a key,
you won't be able to uniquely identify rows, and therefore the table won't qualify as a set. Rather, the
table would be a multiset or a bag.

The phrase of our perception or of our thought implies that the definition of a set is subjective.
Consider a classroom: one person might perceive a set of people, whereas another might perceive a set
of students and a set of teachers. Therefore, you have a substantial amount of freedom in defining sets.
When you design a data model for your database, the design process should carefully consider the
subjective needs of the application to determine adequate definitions for the entities involved.

As for the word object, the definition of a set is not restricted to physical objects, such as cars or
employees, but rather is relevant to abstract objects as well, such as prime numbers or lines.

What Cantor’s definition of a set leaves out is probably as important as what it includes. Notice that
the definition doesn't mention any order among the set elements. The order in which set elements are
listed is not important. The formal notation for listing set elements uses curly brackets: {a, b, c}. Because
order has no relevance, you can express the same set as {b, a, ¢} or {b, ¢, a}. Jumping ahead to the set
of attributes (columns in SQL) that make up the heading of a relation (table in SQL), an element (in this
case, an attribute) is supposed to be identified by name—not by ordinal position.

Similarly, consider the set of tuples (rows in SQL) that make up the body of the relation; an element
(in this case a tuple) is identified by its key values—not by position. Many programmers have a hard
time adapting to the idea that, with respect to querying tables, there is no order among the rows. In
other words, a query against a table can return table rows in any order unless you explicitly request
that the data be ordered in a specific way, perhaps for presentation purposes.

Predicate logic

Predicate logic, whose roots go back to ancient Greece, is another branch of mathematics on which
the relational model is based. Dr. Edgar F. Codd, in creating the relational model, had the insight to
connect predicate logic to both the management and querying of data. Loosely speaking, a predicate
is a property or an expression that either holds or doesn't hold—in other words, is either true or false.
The relational model relies on predicates to maintain the logical integrity of the data and define its
structure. One example of a predicate used to enforce integrity is a constraint defined in a table called
Employees that allows only employees with a salary greater than zero to be stored in the table. The
predicate is “salary greater than zero” (T-SQL expression: salary > 0).

You can also use predicates when filtering data to define subsets, and more. For example, if you
need to query the Employees table and return only rows for employees from the sales department,
you use the predicate "department equals sales” in your query filter (T-SQL expression:
department = ‘sales’).

Background to T-SQL querying and programming

In set theory, you can use predicates to define sets. This is helpful because you can't always define a
set by listing all its elements (for example, infinite sets), and sometimes for brevity it's more convenient
to define a set based on a property. As an example of an infinite set defined with a predicate, the set
of all prime numbers can be defined with the following predicate: “x is a positive integer greater than
1that is divisible only by 1and itself.” For any specified value, the predicate is either true or not true.
The set of all prime numbers is the set of all elements for which the predicate is true. As an example
of a finite set defined with a predicate, the set {0, 1,2, 3, 4, 5, 6, 7, 8, 9} can be defined as the set of all
elements for which the following predicate holds true: “x is an integer greater than or equal to 0 and
smaller than or equal to 9.

The relational model

The relational model is a semantic model for data management and manipulation and is based on

set theory and predicate logic. As mentioned earlier, it was created by Dr. Edgar F. Codd, and later
explained and developed by Chris Date, Hugh Darwen, and others. The first version of the relational
model was proposed by Codd in 1969 in an IBM research report called “Derivability, Redundancy, and
Consistency of Relations Stored in Large Data Banks.” A revised version was proposed by Codd in 1970
in a paper called "A Relational Model of Data for Large Shared Data Banks,” published in the journal
Communications of the ACM.

The goal of the relational model is to enable consistent representation of data with minimal or no
redundancy and without sacrificing completeness, and to define data integrity (enforcement of data
consistency) as part of the model. An RDBMS is supposed to implement the relational model and pro-
vide the means to store, manage, enforce the integrity of, and query data. The fact that the relational
model is based on a strong mathematical foundation means that given a certain data-model instance
(from which a physical database will later be generated), you can tell with certainty when a design is
flawed, rather than relying solely on intuition.

The relational model involves concepts such as propositions, predicates, relations, tuples, attributes,
and more. For nonmathematicians, these concepts can be quite intimidating. The sections that follow
cover some key aspects of the model in an informal, nonmathematical manner and explain how they
relate to databases.

Propositions, predicates, and relations

The common belief that the term relational stems from relationships between tables is incorrect.
“Relational” actually pertains to the mathematical term relation. In set theory, a relation is a representa-
tion of a set. In the relational model, a relation is a set of related information, with the counterpart in
SQL being a table—albeit not an exact counterpart. A key point in the relational model is that a single
relation should represent a single set (for example, Customers). Note that operations on relations
(based on relational algebra) result in a relation (for example, an intersection between two relations).
This is what's known as the closure property of the relational algebra, and is what enables the nesting of
relational expressions.

Background to T-SQL querying and programming 5

Note The relational model distinguishes between a relation and a relation variable, but to
keep things simple, | won't get into this distinction. Instead, I'll use the term relation for both
cases. Also, as Figure 1-1 shows, a relation is made of a heading and a body. The heading
consists of a set of attributes (columns in SQL), where each element has a name and a type
name and is identified by name. The body consists of a set of tuples (rows in SQL), where each
element is identified by a key. To keep things simple, I'll often refer to a table as a set of rows.

Figure 1-1shows an illustration of a relation called Employees. It compares the components of a
relation in relational theory with those of a table in SQL.

: Relational SQL
Employees I‘e|atlon/tab|e Theory Counterparts

: PK] Relation Table
E empid | firstname lastname hiredate Headi I set of set of
v INT VARCHAR(40) | VARCHAR(40) | DATE —— neading 1 attributes columns
| 5|Sven Mortensen 10/17/2021 E
| 8 |Maria Cameron 3/5/2022
| 3 |Judy Lew 4/1/2020 |
: 2|Don Funk 8/14/2020 : f f
! i set o multiset of
; 6| Paul Suurs 10/17/2021 — Body — tuples rows
! 9 | Patricia Doyle 11/15/2022 |
E 1|sara Davis 5/1/2020 !
i 4|Yael Peled 5/3/2021 !
i 7| Russell King 1/2/2022 i

FIGURE 1-1 lllustration of Employees relation

Be aware that creating a truly adequate visual representation of a relation is very difficult in practice,
since the set of attributes making the heading of a relation has no order, and the same goes for the set
of tuples making the body of a relation. In an illustration, it might seem like those elements do have
order even though they don't. Just make sure to keep this in mind.

When you design a data model for a database, you represent all data with relations (tables). You
start by identifying propositions that you will need to represent in your database. A proposition is an
assertion or a statement that must be true or false. For example, the statement, "Employee Jiru
Ben-Gan was born on June 22, 2003, and works in the Pet Food department” is a proposition. If this
proposition is true, it will manifest itself as a row in a table of Employees. A false proposition simply
won't manifest itself. This presumption is known as the closed-world assumption (CWA).

The next step is to formalize the propositions. You do this by taking out the actual data (the body of
the relation) and defining the structure (the heading of the relation)—for example, by creating predi-
cates out of propositions. You can think of predicates as parameterized propositions. The heading of a
relation comprises a set of attributes. Note the use of the term “set”; in the relational model, attributes

Background to T-SQL querying and programming

are unordered and distinct. An attribute has a name and a type name, and is identified by name. For
example, the heading of an Employees relation might consist of the following attributes (expressed
as pairs of attribute names and type names): employeeid integer, firstname character string, lastname
character string, birthdate date, and departmentid integer.

A type is one of the most fundamental building blocks for relations. A type constrains an attribute
to a certain set of possible or valid values. For example, the type INT is the set of all integers in the
range —2,147,483,648 to 2,147,483,647. A type is one of the simplest forms of a predicate in a database
because it restricts the attribute values that are allowed. For example, the database would not accept
a proposition where an employee birth date is February 31, 2003 (not to mention a birth date stated as
something like “abc!”). Note that types are not restricted to base types such as integers or dates; a type
can also be an enumeration of possible values, such as an enumeration of possible job positions. A type
can be simple or complex. Probably the best way to think of a type is as a class—encapsulated data and
the behavior supporting it. An example of a complex type is a geometry type that supports polygons.

Missing values

There's an aspect of the relational model and SQL that is the source of many passionate debates.
Whether to support the notion of missing values and three-valued predicate logic. That is, in two-
valued predicate logic, a predicate is either true or false. If a predicate is not true, it must be false. Use
of two-valued predicate logic follows a mathematical law called “the law of excluded middle.” However,
some support the idea of three-valued predicate logic, taking into account cases where values are
missing. A predicate involving a missing value yields neither true nor false as the result truth value—it
yields unknown.

Take, for example, a mobilephone attribute of an Employees relation. Suppose that a certain employ-
ee's mobile phone number is missing. How do you represent this fact in the database? One option is to
have the mobilephone attribute allow the use of a special marker for a missing value. Then a predicate
used for filtering purposes, comparing the mobilephone attribute with some specific number, will yield
unknown for the case with the missing value. Three-valued predicate logic refers to the three possible
truth values that can result from a predicate—true, false, and unknown.

Some people believe that NULLs and three-valued predicate logic are nonrelational, whereas
others believe that they are relational. Codd actually advocated for four-valued predicate logic,
saying that there were two different cases of missing values: missing but applicable (A-Values marker),
and missing but inapplicable (I-Values marker). An example of "missing but applicable” is when an
employee has a mobile phone, but you don't know what the mobile phone number is. An example
of "missing but inapplicable” is when an employee doesn’'t have a mobile phone at all. According to
Codd, two special markers should be used to support these two cases of missing values. SQL doesn’t
make a distinction between the two cases for missing values that Codd does; rather, it defines the NULL
marker to signify any kind of missing value. It also supports three-valued predicate logic. Support for
NULLs and three-valued predicate logic in SQL is the source of a great deal of confusion and complex-
ity, though one can argue that missing values are part of reality. In addition, the alternative—using
only two-valued predicate logic and representing missing values with your own custom means—is not
necessarily less problematic.

Background to T-SQL querying and programming 7

Note As mentioned, a NULL is not a value but rather a marker for a missing value.
Therefore, though unfortunately it's common, the use of the terminology "NULL value” is
incorrect. The correct terminology is “NULL marker” or just “NULL.” In the book, | typically
use the latter because it's more common in the SQL community.

Constraints

One of the greatest benefits of the relational model is the ability to define data integrity as part of the
model. Data integrity is achieved through rules called constraints that are defined in the data model
and enforced by the RDBMS. The simplest methods of enforcing integrity are assigning an attribute
type and "nullability” (whether it supports or doesn’t support NULLs). Constraints are also enforced
through the model itself; for example, the relation Orders(orderid, orderdate, duedate, shipdate) allows
three distinct dates per order, whereas the relations Employees(empid) and EmployeeChildren(empid,
childname) allow zero to countable infinity children per employee.

Other examples of constraints include the enforcement of candidate keys, which provide entity
integrity, and foreign keys, which provide referential integrity. A candidate key is a key defined on one
or more attributes of a relation. Based on a candidate key's attribute values you can uniquely identify a
tuple (row). A constraint enforcing a candidate key prevents duplicates. You can identify multiple candi-
date keys in a relation. For example, in an Employees relation, you can have one candidate key based on
employeeid, another on SSN (Social Security number), and others. Typically, you arbitrarily choose one
of the candidate keys as the primary key (for example, employeeid in the Employees relation) and use
that as the preferred way to identify a row. All other candidate keys are known as alternate keys.

Foreign keys are used to enforce referential integrity. A foreign key is defined on one or more
attributes of a relation (known as the referencing relation) and references a candidate key in another (or
possibly the same) relation. This constraint restricts the values in the referencing relation’s foreign-key
attributes to the values that appear in the referenced relation’s candidate-key attributes. For example,
suppose that the Employees relation has a foreign key defined on the attribute departmentid, which ref-
erences the primary-key attribute departmentid in the Departments relation. This means that the values
in Employees.departmentid are restricted to the values that appear in Departments.departmentid.

Normalization

The relational model also defines normalization rules (also known as normal forms). Normalization is

a formal mathematical process to guarantee that each entity will be represented by a single relation.

In a normalized database, you avoid anomalies during data modification and keep redundancy to

a minimum without sacrificing completeness. If you follow entity relationship modeling (ERM) and
represent each entity and its attributes, you probably won’t need normalization; instead, you will apply
normalization only to reinforce and ensure that the model is correct. You can find the definition of ERM
in the following Wikipedia article: https.//en.wikipedia.org/wiki/Entity—relationship_model.

Background to T-SQL querying and programming

https://en.wikipedia.org/wiki/Entity�relationship_model

The following sections briefly cover the first three normal forms (INF, 2NF, and 3NF) introduced
by Codd.

INF

The first normal form says that the tuples (rows) in the relation (table) must be unique and attributes
should be atomic. This is a redundant definition of a relation; in other words, if a table truly represents a
relation, it is already in first normal form.

You enforce the uniqueness of rows in SQL by defining a primary key or unique constraint in the
table.

You can operate on attributes only with operations that are defined as part of the attribute’s
type. Atomicity of attributes is subjective in the same way that the definition of a set is subjective.
As an example, should an employee name in an Employees relation be expressed with one attribute
(fullname), two attributes (firstname and lastname), or three attributes (firstname, middlename, and
lastname)? The answer depends on the application. If the application needs to manipulate the parts
of the employee’s name separately (such as for search purposes), it makes sense to break them apart;
otherwise, it doesn't.

In the same way that an attribute might not be atomic enough based on the needs of the applica-
tions that use it, an attribute might also be subatomic. For example, if an address attribute is consid-
ered atomic for the applications that use it, not including the city as part of the address would violate
the first normal form.

This normal form is often misunderstood. Some people think that an attempt to mimic arrays
violates the first normal form. An example would be defining a YearlySales relation with the following
attributes: salesperson, qty2020, qty2021, and qty2022. However, in this example, you don't really violate
the first normal form; you simply impose a constraint—restricting the data to three specific years: 2020,
2021, and 2022.

2NF

The second normal form involves two rules. One rule is that the data must meet the first normal form.
The other rule addresses the relationship between nonkey and candidate-key attributes. For every can-
didate key, every nonkey attribute has to be fully functionally dependent on the entire candidate key.
In other words, a nonkey attribute cannot be fully functionally dependent on part of a candidate key.
To put it more informally, if you need to obtain any nonkey attribute value, you need to provide the
values of all attributes of a candidate key from the same tuple. You can find any value of any attribute
of any tuple if you know all the attribute values of a candidate key.

As an example of violating the second normal form, suppose that you define a relation called Orders
that represents information about orders and order lines. (See Figure 1-2.) The Orders relation contains
the following attributes: orderid, productid, orderdate, qty, customerid, and companyname. The primary
key is defined on orderid and productid.

Background to T-SQL querying and programming 9

